bash! Geplaatst: 28 november 2006 Geplaatst: 28 november 2006 Is er iemand in staat mij Eb/No figures te geven van carriers op NSS806 Cband? <img src="/forums/images/graemlins/smile.gif" alt="" /> Gr Bas There is nothing wrong with having a strong opinion... if it comes with an open mind!
Big fellow Geplaatst: 28 november 2006 Geplaatst: 28 november 2006 De Eb/N0 hangt af van je ontvangst installatie. (De Eb/N0 is de informatie inhoud, ook wel gebruikt om de kwaliteit van een signaal aan te geven.) Dus een 3 meter schotel met een goede kwaliteit LNB zal andere waardes geven dan een 1.20m schotel met een normale kwaliteit LNB... Big fellow “Success is not final, failure is not fatal: it is the courage to continue that counts.” ~ Winston Churchill
bash! Geplaatst: 28 november 2006 Auteur Geplaatst: 28 november 2006 daarom heb ik ook het liefst iemand met een 2.4mtr schotel of groter. <img src="/forums/images/graemlins/smile.gif" alt="" /> Vanaf 1.80 zul je op NSS806 geen verschil in Eb/No zien omdat je de transponder ruisvloer ook zult zien. Het is dus niet zo dat je met een tussen een 3.60 en een 13 meter schotel nog verschil in Eb/No zult zien. Gr BaZ There is nothing wrong with having a strong opinion... if it comes with an open mind!
Gast Geplaatst: 29 november 2006 Geplaatst: 29 november 2006 Hoi buzzztah, Je schijnt er verstand van te hebben. Kun je wat meer over uitleggen over de Eb/No materie..?
Skysurfer Geplaatst: 29 november 2006 Geplaatst: 29 november 2006 Spread Spectrum Scene Eb/N0 Explained Few subjects in RF design elicit as many blank looks as Eb/N0. Read the article and associated links below to find out more about this important subject! What's All This Eb/No Stuff, Anyway? By Jim Pearce (With Apologies to Bob Pease) (This article originally appeared in the Fall 2000 issue of Spread Spectrum Scene Online.) Anyone who has spent more than ten minutes researching digital communications has run across the cryptic notation Eb/No. Usually this shows up when discussing bit error rates or modulation methods. You may have a vague feeling that it represents something important about a digital communication system, but can't really put a finger on what or why. So let's take a look at just what this Eb/No thing is and why it's important. First of all, how do you pronounce Eb/No? Most engineers that I know say "E bee over en zero," though some of the more fastidious ones say "E sub bee over en sub zero". At any rate, even though "No" is usually written with an "Oh" instead of a zero, it is not pronounced as the word "no". Eb/No is classically defined as the ratio of Energy per Bit (Eb) to the Spectral Noise Density (No). If this definition leaves you with a empty, glassy-eyed feeling, you're not alone. The definition does not give you any insight into how to measure Eb/No or what it's used for. Eb/No is the measure of signal to noise ratio for a digital communication system. It is measured at the input to the receiver and is used as the basic measure of how strong the signal is. Different forms of modulation -- BPSK, QPSK, QAM, etc. -- have different curves of theoretical bit error rates versus Eb/No as shown in Figure 1. These curves show the communications engineer the best performance that can be achieved across a digital link with a given amount of RF power. Figure 1. BER vs Eb/No (Thanks, Intersil for this figure) In this respect, it is the fundamental prediction tool for determining a digital link's performance. Another, more easily measured predictor of performance is the carrier-to-noise or C/N ratio. So let's pretend that we are designing a digital link, and see how to use Eb/No and C/N to find out how much transmitter power we will need. Our example will use differential quadrature phase shift keying (DQPSK) and transmit 2 Mbps with a carrier frequency of 2450 MHz. It will have a 30 dB fade margin and operate within a reasonable bit error rate (BER) at an outdoor distance of 100 meters. Hold on to your hat here! Remember that when we play with dB or any log-type operation, multiplication is replaced by adding the dBs, and division is replaced by subtracting the dBs. Our strategy for determining the transmit power is to: Determine Eb/No for our desired BER; Convert Eb/No to C/N at the receiver using the bit rate; and Add the path loss and fading margins. We first decide what is the maximum BER that we can tolerate. For our example, we choose 10-6 figuring that we can retransmit the few packets that will have errors at this BER. Looking at Figure 1, we find that for DQPSK modulation, a BER of 10-6 requires an Eb/No of 11.1 dB. OK, great. Now we convert Eb/No to the carrier to noise ratio (C/N) using the equation: Where: fb is the bit rate, and Bw is the receiver noise bandwidth. So for our example, C/N = 11.1 dB + 10log(2x106 / 1x106) = 11.1 dB + 3dB = 14.1dB. Since we now have the carrier-to-noise ratio, we can determine the necessary received carrier power after we calculate the receiver noise power. Noise power is computed using Boltzmann's equation: N = kTB Where: k is Boltzmann's constant = 1.380650x10-23 J/K; T is the effective temperature in Kelvin, and B is the receiver bandwidth. Therefore, N1 = (1.380650x10-23 J/K) * (290K) *(1MHz) = 4x10-15W = 4x10-12mW = -114dBm Our receiver has some inherent noise in the amplification and processing of the signal. This is referred to as the receiver noise figure. For this example, our receiver has a 7 dB noise figure, so the receiver noise level will be: N = -107 dBm. We can now find the carrier power as C = C/N * N, or in dB C = C/N + N. C = 14.1 dB + -107dBm = -92.9 dBm This is how much power the receiver must have at its input. To determine the transmitter power, we must account for the path loss and any fading margin that we are building in to the system. The path loss in dB for an open air site is: PL = 22 dB + 20log(d/ë) Where: PL is the path loss in dB; d is the distance between the transmitter and receiver; and ë is the wavelength of the RF carrier (= c/frequency) This assumes antennas with no gain are being used. For our example, PL = 22 dB + 20log(100/.122) = 22 + 20*2.91 = 22 + 58.27 = 80.27 dB Finally, adding our 30 dB fading margin will give the required transmitter power: P = -92.9 + 80.27 + 30 = 17.37 dBm = 55 mW Our result, 55 mW, is well within a reasonable power level for spread spectrum links in the 2.4 GHz band. So we see that, in this example, our 100 meter range is a very reasonable expectation. So, what is all this Eb/No stuff? Simply put, it's one of the "secrets" used by top RF design engineers to evaluate options for digital RF links, and is a crucial step in the design of systems that will meet performance expectations. Bron: SSS Online
bash! Geplaatst: 29 november 2006 Auteur Geplaatst: 29 november 2006 Ik had het niet beter uit kunnen leggen <img src="/forums/images/graemlins/smile.gif" alt="" /> uit bovenstaande berekeningen blijkt dus inderdaad ook dat de Eb/No afhankelijk is van de C/N (o.a.). Daardoor maakt het niet uit of je met een 3.6 of 13 meter schotel kijkt omdat je met een beetje schotel de transponder ruisvloer ziet.(ruis afkomstig van de TWTA en space input loss in de satelliet). De meeste professionele ontvangers of modems geven allemaal Eb/No cijfers in plaats van C/N of SNR of zelfs gewoon een signaal sterkte. Dus.. heeft er iemand een 1.8 mtr of groter op de 806 gericht staan met daaraan een degelijke ontvanger? <img src="/forums/images/graemlins/smile.gif" alt="" /> Gr BaZ There is nothing wrong with having a strong opinion... if it comes with an open mind!
Aanbevolen berichten
Maak een account aan of log in om te reageren
Je moet een lid zijn om een reactie te kunnen achterlaten
Account aanmaken
Registreer voor een nieuwe account in onze community. Het is erg gemakkelijk!
Registreer een nieuwe accountInloggen
Heb je reeds een account? Log hier in.
Nu inloggen